If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + 4x + 2ix + 2i + 3 = 0 Reorder the terms: 3 + 2i + 2ix + 4x + x2 = 0 Solving 3 + 2i + 2ix + 4x + x2 = 0 Solving for variable 'i'. Move all terms containing i to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + 2i + 2ix + 4x + -3 + x2 = 0 + -3 Reorder the terms: 3 + -3 + 2i + 2ix + 4x + x2 = 0 + -3 Combine like terms: 3 + -3 = 0 0 + 2i + 2ix + 4x + x2 = 0 + -3 2i + 2ix + 4x + x2 = 0 + -3 Combine like terms: 0 + -3 = -3 2i + 2ix + 4x + x2 = -3 Add '-4x' to each side of the equation. 2i + 2ix + 4x + -4x + x2 = -3 + -4x Combine like terms: 4x + -4x = 0 2i + 2ix + 0 + x2 = -3 + -4x 2i + 2ix + x2 = -3 + -4x Add '-1x2' to each side of the equation. 2i + 2ix + x2 + -1x2 = -3 + -4x + -1x2 Combine like terms: x2 + -1x2 = 0 2i + 2ix + 0 = -3 + -4x + -1x2 2i + 2ix = -3 + -4x + -1x2 Reorder the terms: 3 + 2i + 2ix + 4x + x2 = -3 + -4x + -1x2 + 3 + 4x + x2 Reorder the terms: 3 + 2i + 2ix + 4x + x2 = -3 + 3 + -4x + 4x + -1x2 + x2 Combine like terms: -3 + 3 = 0 3 + 2i + 2ix + 4x + x2 = 0 + -4x + 4x + -1x2 + x2 3 + 2i + 2ix + 4x + x2 = -4x + 4x + -1x2 + x2 Combine like terms: -4x + 4x = 0 3 + 2i + 2ix + 4x + x2 = 0 + -1x2 + x2 3 + 2i + 2ix + 4x + x2 = -1x2 + x2 Combine like terms: -1x2 + x2 = 0 3 + 2i + 2ix + 4x + x2 = 0 The solution to this equation could not be determined.
| -1/2(8x+2)+1/5(35+10)= | | 3*ln(7x)=27 | | 3/8*2/3*3/4 | | 4*(0,6x-0,3)-3*(0,7x-0,1)=0 | | [2x-1]=2 | | -6x-3(7x-26)=-11 | | 14u-8+6u+41= | | -288=2x-6(6x-20) | | 4(4x+1)+4x(-2)= | | .5(4x-2)=x+5 | | 2x^4-x^3+2x^2-1=0 | | (3h-2m)(2h+m)= | | 2.3-r=10.4 | | a+.11=.20 | | a+.11=.290 | | 7/8-1/4-2/4-(1/2)^2 | | w^2+45+18w=0 | | 3*(x-7)-(9-2x)=2*(12-x)-(x-10) | | 54x^2-5x-325=0 | | x^2-3x=60 | | (11.7*10*12)/(5.2*10*5) | | 1.2x2/3 | | 5r+7-3r=-3 | | x+y-z=11 | | (2.1*7.5)+(2.1*1.8)= | | x+(x-73)+67=180 | | 3(1j+4)=-2j+1j | | 0.19x=53.20 | | x+6y-5z=-7 | | (4x+20)+(5x-2)=180 | | -240=5x-3(-5x+20) | | x+30=5x+10 |